A Machine learning approach for Shape From Shading

نویسندگان

  • Lyes Abada
  • Saliha Aouat
چکیده

The aim of Shape From Shading (SFS) problem is to reconstruct the relief of an object from a single gray level image. In this paper we present a new method to solve the problem of SFS using Machine learning method. Our approach belongs to Local resolution category. The orientation of each part of the object is represented by the perpendicular vector to the surface (Normal Vector), this vector is defined by two angles SLANT and TILT, such as the TILT is the angle between the normal vector and Z-axis, and the SLANT is the angle between the the X-axis and the projection of the normal to the plane. The TILT can be determined from the gray level, the unknown is the SLANT. To calculate the normal of each part of the surface (pixel) a supervised Machine learning method has been proposed. This method divided into three steps: the first step is the preparation of the training data from 3D mathematical functions and synthetic objects. The second step is the creation of database of examples from 3D objects (off-line process). The third step is the application of test images (on-line process). The idea is to find for each pixel of the test image the most similar element in the examples database using a similarity value. Keywords—Integration method, Machine learning, Needle map, Shape From Shading.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shape from Shading through Shape Evolution

In this paper, we address the shape-from-shading problem by training deep networks with synthetic images. Unlike conventional approaches that combine deep learning and synthetic imagery, we propose an approach that does not need any external shape dataset to render synthetic images. Our approach consists of two synergistic processes: the evolution of complex shapes from simple primitives, and t...

متن کامل

Damage identification of structures using second-order approximation of Neumann series expansion

In this paper, a novel approach proposed for structural damage detection from limited number of sensors using extreme learning machine (ELM). As the number of sensors used to measure modal data is normally limited and usually are less than the number of DOFs in the finite element model, the model reduction approach should be used to match with incomplete measured mode shapes. The second-order a...

متن کامل

A general framework for three-dimensional surface reconstruction by self-consistent fusion of shading and shadow features

In this paper a novel framework for three-dimensional surface reconstruction by self-consistent fusion of shading and shadow features is presented. Based on the analysis of at least two pixel-synchronous images of the scene under different illumination conditions, this framework combines a shape from shading approach for estimating surface gradients and altitude variations on small scales with ...

متن کامل

A Hybrid Machine Learning Method for Intrusion Detection

Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...

متن کامل

Reconstructing Shape from Dictionaries of Shading Primitives

Although a lot of research has been performed in the field of reconstructing 3D shape from the shading in an image, only a small portion of this work has examined the association of local shading patterns over image patches with the underlying 3D geometry. Such approaches are a promising way to tackle the ambiguities inherent in the shape-from-shading (SfS) problem, but issues such as their sen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1607.03284  شماره 

صفحات  -

تاریخ انتشار 2016